Read PDF Modern Electronic Instrumentation And Measurement Techniques Helfrick Cooper This is likewise one of the factors by obtaining the soft documents of this **Modern Electronic Instrumentation And Measurement Techniques Helfrick Cooper** by online. You might not require more become old to spend to go to the books introduction as capably as search for them. In some cases, you likewise pull off not discover the broadcast Modern Electronic Instrumentation And Measurement Techniques Helfrick Cooper that you are looking for. It will very squander the time. However below, later you visit this web page, it will be appropriately unconditionally easy to get as capably as download guide Modern Electronic Instrumentation And Measurement Techniques Helfrick Cooper It will not acknowledge many era as we tell before. You can accomplish it even though acquit yourself something else at house and even in your workplace. in view of that easy! So, are you question? Just exercise just what we present under as well as review **Modern Electronic Instrumentation And Measurement Techniques Helfrick Cooper** what you with to read! ## 3CXFMV - CECELIA GAEL Excerpt from Critical Electrical Measurement Needs and Standards for Modern Electronic Instrumentation: Report of a Workshop Sponsored by the National Bureau of Standards, Gaithersburg, Maryland, September 23-24, 1974 The traditional role of the Electricity Division of the National Bureau of Standards has included a variety of activities directed at the support of the electrical measurement portion of the National Measurement System. However, as industrial and governmental applications of the newer electronic technologies have proliferated, it has become apparent that the character of the Division's participa tion indeed leadership must further evolve if it is to continue responsively to serve the nation's electrical measurement needs, specifically in this critical new arena. The pervasiveness of electronic technology has brought to the industrial production floor a measurement sophistication in some traditional areas that rivals what would have been considered outstanding for a well-equipped laboratory not too many years ago. Yet the measurement philosophy exemplified by careful identification theoretical of all sources of uncertainty, followed by equally careful experimental verification, can hardly be said to have accompanied this sophistication to its new location. The Measurement Assurance Programs (map's) with which the Electricity Division has become increasingly concerned of late, are intended in part to be a first step in providing a higher degree of measurement assurance in situ as close to the measurement site as possible. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works. The inclusion of an electrical measurement course in the undergraduate curriculum of electrical engineering is important in forming the technical and scientific knowledge of future electrical engineers. This book explains the basic measurement techniques, instruments, and methods used in everyday practice. It covers in detail both analogue and digital instruments, measurements errors and uncertainty, instrument transformers, bridges, amplifiers, oscilloscopes, data acquisition, sensors, instrument controls and measurement systems. The reader will learn how to apply the most appromeasurement priate method and instrument for a particular application, and how to assemble the measurement system from physical quantity to the digital data in a computer. The book is primarily intended to cover all necessary topics of instrumentation and measurement for students of electrical engineering, but can also serve as a reference for engineers and practitioners to expand or refresh their knowledge in this field. The fourth edition of this highly readable and wel-I-received book presents the subject of measurement and instrumentation systems as an integrated and coherent text suitable for a one-semester course for undergraduate students of Instrumentation Engineering, as well as for instrumentation course/paper for Electrical/Electronics disciplines. Modern scientific world requires an increasing number of complex measurements and instruments. The subject matter of this well-planned text is designed to ensure that the students gain a thorough understanding of the concepts and principles of measurement of physical quantities and the related transducers and instruments. This edition retains all the features of its previous editions viz. plenty of worked-out examples, review questions culled from examination papers of various universities for practice and the solutions to numerical problems and other additional information in appendices. NEW TO THIS EDITION Besides the inclusion of a new chapter on Hazardous Areas and Instrumentation(Chapter 15), various new sections have been added and existing sections modified in the following chapters: Chapter 3 Linearisation and Spline interpolation Chapter 5 Classifications of transducers, Hall effect, Piezoresistivity, Surface acoustic waves, Optical effects (This chapter has been thoroughly modified) Chapter 6 Proximitys sensors Chapter 8 Hall effect and Saw transducers Chapter 9 Proving ring, Prony brake, Industrial weighing systems, Tachometers Chapter 10 IT-S-90, SAW thermometer Chapter 12 Glass gauge, Level switches, Zero suppression and Zero elevation, Level switches Chapter 13 The section on ISFET has been modified substantially This text offers comprehensive coverage of electronic instruments and electronics-aided measurements, highlighting the essential components of digital electronic instrumentation and the principles involved in electrical and electronic measurement processes. It also explains the stages involved in data acquisition systems for acquiring, manipulating, processing, storing, displaying and interpreting the sought-for data. The principal instruments presented in this book include cathode ray oscilloscope (CRO), analyzers, signal generators, oscillators, frequency synthesizers, sweep generators, function generators and attenuators. Besides, the book covers several laboratory meters such as phase meters, frequency meters, Qmeters, wattmeters, energy meters, power factor meters, and measurement bridges. Also included are a few important sensors and transducers which are used in the measurement of temperature, pressure, flow rate, liquid level, force, etc. The book also emphasizes the growing use of fibre optic instrumentation. It explains some typical fibre optic sensing systems including the fibre optic gyroscope. Some applications of optical fibre in biomedical area are described as well. The book is intended for a course on Electronic Measurements and Instrumentation prescribed for B.E./B.Tech. students of Electronics and Instrumentation Engineering, Electronics and Communication Engineering, Electronics and Control Engineering, and Electronics and Computer Engineering. It will also be a useful book for diploma level students pursuing courses in electrical/electronics/instrumentation disciplines. A variety of worked-out examples and exercises serve to illustrate and test the understanding of the underlying concepts and principles. ADDITIONAL FEATURES • Provides the background essential knowledge concerning the principles of analogue and digital electronics • Conventional techniques of measurement of electrical quantities are also presented • Shielding, grounding and EMI aspects of instrumentation are highlighted • Units, dimensions, standards, measurement errors and error analysis are dealt with in the appendices • Tech- niques of automated test and measurement systems are briefly discussed in an appendix The book is meant for B.E./B.Tech. students of different universities of India and abroad. It contains all basic material required at undergraduate level. The author has included "Examination guestions" from several Indian Universities as solved examples. The sections on "Descriptive Questions" and "Multiple Choice Questions" contains the theory type examination questions and objective questions respectively. A comprehensive, handss-on review of the most up-to-date techniques in RF and microwave measurement, including practical advice on deployment challenges. The standard laboratory tools in the modern scientific world include a wide variety of electronic instruments used in measurement and control systems. This book provides a firm foundation in principles, operation, design, and applications of electronic instruments. Commencing with electromechanical instruments, the specialized instruments such as signal analyzers, counters, signal generators, and digital storage oscilloscope are treated in detail. Good design practices such as grounding and shielding are emphasized. The standards in quality management, basics of testing, compatibility, calibration, traceability, metrology and various ISO 9000 quality assurance guidelines are explained as well. The evolution of communication technology in instrumentation is an important subject. A single chapter is devoted to the study of communication methods used in instrumentation technology. There are some areas where instrumentation needs special type of specifications-one such area is hazardous area. The technology and standards used in hazardous areas are also discussed. An instrumentation engineer is expected to draw and understand the instrumentation drawings. An Appendix explains the symbols and standards used in P&I diagrams with several examples. Besides worked-out examples included throughout, endof-chapter questions and multiple choice questions are also given to judge the student's understanding of the subject. Practical and state-of-the-art in approach, this textbook will be useful for students of electrical, electronics, and instrumentation engineering. A substantial update of his earlier IEE book, Modern Electronic Test and Measuring Instruments, the author provides a state-of-the art review of modern families of digital instruments. For each family he covers internal design, use and applications, highlighting their advantages and limitations from a practical application viewpoint. The book also treats new digital instrument families such as DSOs, Arbitrary Function Generators, FFT analysers and many other common systems used by the test engineers, designers and research scientists. A mainstream undergraduate text on electronic measurement for electrical and electronic engineers. In this modern scientific world a thorough understanding of complex measurements and instruments is the need of the hour. This book provides a comprehensive coverage of the concepts and principles of measurements and instrumentation, and brings into focus the recent and significant developments in this field. The book presents an exhaustive exposition of different types of measuring instruments and their applications in an easy-to-grasp manner. It presents even the minute details of various measurement techniques and calibration methods, which are the essential features of a measurement programme. The book elaborates on the theoretical background and practical knowledge of different measuring instruments to make the students accustomed to these devices. An in-depth coverage of topics makes the text useful to somewhat more advanced courses and its elaborated methodology will help students meet the challenges in their career. This book is ideally suitable for undergraduate students (BE/B.Tech.) of Electrical, Electronics and Instrumentation and Control disciplines of engineering. It can be also used as reference book for the cable testing, testing of instruments transformers, testing of energy meters and measurement of physical variables. KEY FEATURES: Gives a number of chapter-end review questions and numerical problems for practice. Includes plenty of diagrams to clarify the concepts. Contains about 250 problems and 200 solved examples for the benefit of the students. The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement volume of the Second Edition: Contains contributions from field experts, new chapters, and updates to all 98 existing chapters Covers sensors and sensor technology, time and frequency, signal processing, displays and recorders, and optical, medical, biomedical, health, environmental, electrical, electromagnetic, and chemical variables A concise and useful reference for engineers, scientists, academic faculty, students, designers, man- agers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement provides readers with a greater understanding of advanced applications. Weighing in on the growth of innovative technologies, the adoption of new standards, and the lack of educational development as it relates to current and emerging applications, the third edition of Introduction to Instrumentation and Measurements uses the authors' 40 years of teaching experience to expound on the theory, science, and art of modern instrumentation and measurements (I&M). What's New in This Edition: This edition includes material on modern integrated circuit (IC) and photonic sensors, micro-electro-mechanical (MEM) and nano-electro-mechanical (NEM) sensors, chemical and radiation sensors, signal conditioning, noise, data interfaces, and basic digital signal processing (DSP), and upgrades every chapter with the latest advancements. It contains new material on the designs of micro-electro-mechanical (MEMS) sensors, adds two new chapters on wireless instrumentation and microsensors, and incorporates extensive biomedical examples and problems. Containing 13 chapters, this third edition: Describes sensor dynamics, signal conditioning, and data display and storage Focuses on means of conditioning the analog outputs of various sensors Considers noise and coherent interference in measurements in depth Covers the traditional topics of DC null methods of measurement and AC null measurements Examines Wheatstone and Kelvin bridges and potentiometers Explores the major AC bridges used to measure inductance, Q, capacitance, and D Presents a survey of sensor mechanisms Includes a description and analysis of sensors based on the giant magnetoresistive effect (GMR) and the anisotropic magnetoresistive (AMR) effect Provides a detailed analysis of mechanical gyroscopes, clinometers, and accelerometers Contains the classic means of measuring electrical quantities Examines digital interfaces in measurement systems Defines digital signal conditioning in instrumentation Addresses solid-state chemical microsensors and wireless instrumentation Introduces mechanical microsensors (MEMS and NEMS) Details examples of the design of measurement systems Introduction to Instrumentation and Measurements is written with practicing engineers and scientists in mind, and is intended to be used in a classroom course or as a reference. It is assumed that the reader has taken core EE curriculum courses or their equivalents. The importance of electronic measuring instruments and transducers is well known in the various engineering fields. The book provides comprehensive coverage of various electronic measuring instruments, transducers, data acquisition system, oscilloscopes and measurement of physical parameters. The book starts with explaining the theory of measurement including characteristics of instruments, classification, statistical analysis and limiting errors. Then the book explains the various analog and digital instruments such as average and true rms responding voltmeters, chopper and sampling voltmeter, types of digital voltmeters, multimeter and ohmmeter. It also includes the discussion of high frequency impedance measurement. The book further explains types of signal generators and various signal analyzers such as wave analyzer, logic analyzer, distortion analyzer and power analyzer. The book teaches various d.c. and a.c. bridges along with necessary derivations and phasor diagrams. The book incorporates the discussion of various types of conventional and special purpose oscilloscopes. The book includes the discussion of time and frequency measurement and types of recorders. The chapter on transducers is dedicated to the detailed discussion of various types of transducers. The book also includes the measurement of various physical parameters such as flow, displacement, velocity, force, pressure and torque. Finally, it incorporates the discussion of data acquisition system. Each chapter gives the conceptual knowledge about the topic dividing it in various sections and subsections. Each chapter provides the detailed explanation of the topic, practical examples and variety of solved problems. The book explains the philosophy of the subject which makes the understanding of the concepts very clear and makes the subject more interesting. Learn how to develop your own applications to monitor or control instrumentation hardware. Whether you need to acquire data from a device or automate its functions, this practical book shows you how to use Python's rapid development capabilities to build interfaces that include everything from software to wiring. You get step-by-step instructions, clear examples, and hands-on tips for interfacing a PC to a variety of devices. Use the book's hardware survey to identify the interface type for your particular device, and then follow detailed examples to develop an interface with Python and C. Organized by interface type, data processing activities, and user interface implementations, book is for anyone who works with instrumentation, robotics, data acquisition, or process control. Understand how to define the scope of an application and determine the algorithms necessary, and why it's important Learn how to use industry-standard interfaces such as RS-232, RS-485, and GPIB Create low-level extension modules in C to interface Python with a variety of hardware and test instruments Explore the console, curses, TkInter, and wxPython for graphical and text-based user interfaces Use open source software tools and libraries to reduce costs and avoid implementing functionality from scratch The importance of measuring instruments and transducers is well known in the various engineering fields. The book provides comprehensive coverage of various electrical and electronic measuring instruments, transducers, data acquisition system, storage and display devices . The book starts with explaining the theory of measurement including characteristics of instruments, classification, standards, statistical analysis and limiting errors. Then the book explains the various electrical and electronic instruments such as PMMC, moving iron, electrodynamometer type, energy meter, wattmeter, digital voltmeters and multimeters. It also includes the discussion of various magnetic measurements, instrument transformers, power factor meters, frequency meters, phase meters and synchros. The book further explains d.c. and a.c. potentiometers and their applications. The book teaches various d.c. and a.c. bridges along with necessary derivations and phasor diagrams. The book incorporates the various storage and display devices such as, recorders. plotters, printers, oscilloscopes, LED, LCDs and dot matrix displays. The chapter on transducers is dedicated to the detailed discussion of various types of transducers such as resistive, capacitive, strain gauges, RTD, thermistors, inductive, LVDT, thermocouples, piezoelectric, photoelectric and digital transducers. It also adds the discussion of optical fiber sensors. The book also includes good coverage of data acquisition system, data loggers, DACs and ADCs. Each chapter starts with the background of the topic. Then it gives the conceptual knowledge about the topic dividing it in various sections and subsections. Each chapter provides the detailed explanation of the topic, practical examples and variety of solved problems. The book explains the philosophy of the subject which makes the understanding of the concepts very clear and makes the subject more interesting. Knowledge of instrumentation is critical in light of precise requirements of modern processes and systems. Rapid development in instrumentation technology coupled with the adoption of new standards makes a firm, up-to-date foundation of knowledge more important than ever in most science and engineering fields. Understanding this, Robert B. Northrop produced the best-selling Introduction to Instrumentation and Measurements in 1997. The second edition continues to provide in-depth coverage of a wide array of modern instrumentation and measurement topics, updated to reflect advances in the field. See What's New in the Second Edition: Anderson Current Loop technology Design of optical polarimeters and their applications Photonic measurements with photomultipliers and channel-plate photon sensors Sensing of gas-phase analytes (electronic "noses") Using the Sagnac effect to measure vehicle angular velocity Micromachined, vibrating mass, and vibrating disk rate gyros Analysis of the Humphrey air jet gyro Micromachined IC accelerometers GPS and modifications made to improve accuracy Substance detection using photons Sections on dithering, delta-sigma ADCs, data acqui- the highly sensitive and sition cards, the USB, and virtual instruments and PXI systems Based on Northrop's 40 years of experience, Introduction to Instrumentation and Measurements, Second Edition is unequalled in its depth and breadth of coverage. This new edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences; explains sensors and the associated hardware and software; and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Second Edition: Consists of 2 volumes Features contributions from 240+ field experts Contains 53 new chapters, plus updates to all 194 existing chapters Addresses different ways of making measurements for given variables Emphasizes modern intelligent instruments and techniques, human factors, modern display methods, instrument networks, and virtual instruments Explains modern wireless techniques, sensors, measurements, and applications A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition provides readers with a greater understanding of advanced applications. The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Spatial, Mechanical, Thermal, and Radiation Measurement volume of the Second Edition: Contains contributions from field experts, new chapters, and updates to all 96 existing chapters Covers instrumentation and measurement concepts, spatial and mechanical variables, displacement, acoustics, flow and spot velocity, radiation, wireless sensors and instrumentation, and control and human factors A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Spatial, Mechanical, Thermal, and Radiation Measurement provides readers with a greater understanding of advanced applications. DC deflection instruments; AC deflection instruments; AC and DC brikges; Comparison measurements; Digital instruments; Microcomputers: an Introduction; Electronic multimeters; The osciloscope. Signal generators; Graphics recording systems; Laboratory amplifiers; Operational and laboratories amplifiers; Traducers; Data converters; Probes, connectors, etc...; Testing electronic components; Measurement of frequency and time "Joseph F. Keithley, a modern pioneer of instrumentation, brings you a fascinating history of electrical measurement from the ancient Greeks to the inventors of the early twentieth century. Written in a direct and fluent style, the book illuminates the lives of the most significant inventors in the field, including George Simon Ohm, Andre Marie Ampere, and Jean Baptiste Fourier. Chapter by chapter, meet the inventors in their youth and discover the origins of their lifelong pursuits of electrical measurement. Not only will you find highlights of important technological contributions, you will also learn about the tribulations and excitement that accompany the discoveries of these early masters. Included are nearly 100 rare photographs from museums around the world. THE STORY OF ELECTRI-CAL AND MAGNETIC MEA- SUREMENTS is a ""must read"" for students and practitioners of physics, electrical engineering, and instrumentation and metrology who want to understand the history behind modern day instruments." Sponsored by: IEEE Instrumentation and Measurement Society The book Electronic Instrumentation and Measurement has been written for the students of BE/BTech in Electronics and Communication Engineering, Electrical and Electronics Engineering, and Electronic Instrumentation Engineering. It explains the performance, operation and applications of the most important electronic measuring instruments, techniques and instrumentation methods that include both analog and digital instruments. The book covers a wide range of topics that deal with the basic measurement theory, measurement techniques, such as analog meter movements, digital instruments, power and energy measurement meters, AC and DC bridges, magnetic measurements, cathode ray oscilloscope, display devices and recorders, and transducers. It also explains generation and analysis of signals along with DC and AC potentiometers, and transformers. Key Features • Complete coverage of the subject as per the syllabi of most universities • Relevant illustrations provide graphical representation for in-depth knowledge • A large number of mathematical examples for maximum clarity of concepts • Chapter objectives at the beginning of each chapter for its overview • Chapterend summary and exercises for quick review and to test your knowledge • A comprehensive index in alphabetical form for quick access to finer topics This book is a collection of chapters linked together by a logical framework aimed at exploring the modern role of the measurement science in both the technically most advanced applications and in everyday life Provides a unique methodological approach to understanding modern measurements Important methods and devices are presented in a synthetic and easy-to-understand way Includes end-of-chapter exercises and solutions A comprehensive work which examines modern instrumentation for testing and measurement. The author groups together common families of electronic instruments for ease of reference, pro- vides discussion of VLSIs and ASICs, and describes the design trends of future instrument groups. Computer Applications -- Physical Sciences and Engineering. This title presents the general principles of instrumentation processes. It explains the theoretical analysis of physical phenomena used by standard sensors and transducers to transform a physical value into an electrical signal. The pre-processing of these signals through electronic circuits - amplification, signal filtering and analog-to-digital conversion - is then detailed, in order to provide useful basic information. Attention is then given to general complex systems. Topics covered include instrumentation and measurement chains, sensor modeling, digital signal processing and diagnostic methods and the concept of smart sensors, as well as microsystem design and applications. Numerous industrial examples punctuate the discussion, setting the subjects covered in the book in their practical context. Describes the use of microprocessors and computers in measuring systems design. It examines the concepts, principles and practices of using modern microprocessors, recent digital signal processors and computers in measurement and control systems, with an emphasis on measurement and design. Using detailed practical examples and scenarios that apply theoretical information, the author covers topics including the evolution of digital techniques in instrumentation; the use of computers in data acquisition systems; personal instrumentation and data distribution systems. Modern science and engineering relies heavily on understanding computer hardware and software in order to make effective use of these tools in the laboratory and industrial environments. The authors of Modern Instrumentation: A Computer Approach have succeeded in producing a highly readable source that will serve both newcomers to the field as well as experienced professionals. Including both fundamentals and applications, the book first describes the role of the computer in instrument systems and provides numerous practical examples. The second part of the book explores specific software packages and their capabilities for applications such as, instrument design and simulation, data acquisition, data processing, and the potential of artificial intelligence in instrument design. Because of the full integration of theory with practical applications of leading software packages, this book is an extremely useful reference for those who use computer-based instrument technology for data acquisition and who are involved with hardware or software development for laboratory and process control. This book provides comprehensive coverage of basic measurement system, development in instrumentation systems. It covers both analog and digital instruments in detailed manner. It also provides the information regarding principle, operation and construction of different instruments, recorders and display devices. Special Chapters 4 and 5 are devoted for measurement of electrical and non-elements and data acquisition systems. It gives an exhaustive treatment of different type of controllers used in process control. This book is simple, up-to-date and maintains proper balance between theoretical and practical aspects regarding instrumentation systems. It is useful to Degree and Diploma students in Electronics and Instrumentation Engineering and also useful for AMIE students. Measurement and Instrumentation: Theory and Application, Second Edition, introduces undergraduate engineering students to measurement principles and the range of sensors and instruments used for measuring physical variables. This updated edition provides new coverage of the latest developments in measurement technologies, including smart sensors, intelligent instruments, microsensors, digital recorders, displays, and interfaces, also featuring chapters on data acquisition and signal processing with LabVIEW from Dr. Reza Langari. Written clearly and comprehensively, this text provides students and recently graduated engineers with the knowledge and tools to design and build measurement systems for virtually any engineering application. Provides early coverage of measurement system design to facilitate a better framework for understanding the importance of studying measurement and instrumentation Covers the latest developments in measurement technologies, including smart sensors, intelligent instruments, microsensors, digital recorders, displays, and interfaces Includes significant material on data acquisition and signal processing with LabVIEW Extensive coverage of measurement uncertainty aids students' ability to determine the accuracy of instruments and measurement systems **TECHNICAL**